MTH 201: Multivariable Calculus and Differential Equations

Problem Set 2: Surface Integrals

1. Find parametrizations for the following surfaces.
(a) The cap cut from the sphere $x^{2}+y^{2}+z^{2}=9$ by the cone $z=\sqrt{x^{2}+y^{2}}$.
(b) The surface cut from the parabolic cylinder $y=x^{2}$ by the planes $z=0, z=3$, and $y=2$.
(c) The portion of the cone $z=z \sqrt{x^{2}+y^{2}}$ between the planes $z=2$ and $z=4$.
(d) The portion of the plane $x-y+2 z=2$ inside the cylinder $x^{2}+z^{2}=3$.
(e) The portion of the cylinder $y^{2}+(z-5)^{2}=25$ between the planes $x=0$ and $x=10$.
(f) The ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
(g) The hyperboloid of two sheets $\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+1$.
2. Use a parametrization to the express area of the surface as a double integral and then evaluate the integral.
(a) The cap cut from the paraboloid $z=2-x^{2}-y^{2}$ by the cone $z=\sqrt{x^{2}+y^{2}}$.
(b) The lower position cut from the sphere $x^{2}+y^{2}+z^{2}=2$ by the cone $z=\sqrt{x^{2}+y^{2}}$.
(c) The portion of the plane $z=-x$ inside the cylinder $x^{2}+y^{2}=4$.
(d) The portion of the cone $z=\sqrt{x^{2}+y^{2}} / 3$ between $z=1$ and $z=4 / 3$.
3. Compute the surface area of the following surfaces.
(a) The ellipse cut from the plane $z=c x$ by the cylinder $x^{2}+y^{2}=1$.
(b) The portion of $x^{2}=2 z$ that lies above the traingle bounded by $x=\sqrt{3}, y=0$, and $y=x$ in the $x y$-plane.
(c) The cap cut from the sphere $x^{2}+y^{2}+z^{2}=2$ and $z=\sqrt{x^{2}+y^{2}}$.
(d) The surface in the first octant cut from the cylinder $y=(2 / 3) z^{3 / 2}$ by the planes $x=1$ and $y=16 / 3$.
(e) The portion of the paraboloid $x=4-y^{2}-z^{2}$ that lies above the ring $1 \leq y^{2}+z^{2} \leq 4$ in the $y z$-plane.
(f) The portion of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies over the region between the circle $x^{2}+y^{2}=1$ and the ellipse $9 x^{2}+4 y^{2}=36$ in the $x y$-plane.
4. Integrate the given function over the given surface.
(a) $H(x, y, z)=y z$ over the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies above the cone $z=\sqrt{x^{2}+y^{2}}$.
(b) $G(x, y, z)=x y z$ over the rectangular solid bounded by the planes $x= \pm a, y= \pm b$, and $z= \pm c$.
(c) $G(x, y, z)=x^{2}$ over the unit sphere.
(d) $G(x, y, z)=x$ over the surface given by $z=x^{+} y$, for $(x, y) \in[0,1] \times[-1,1]$. $H(x, y, z)=x^{2} \sqrt{5-4 z}$ over the the parabolic dome $z=1-x^{2}-y^{2}$.
(e) $G(x, y, z)=x+y+z$ over the portion of the plane $2 x+2 y+z=2$ in the first octant.
(f) $G(x, y, z)=z$ over the cylindrical surface $y^{2}+z^{2}=4, z \geq 0, x \in[1,4]$.
5. Find the flux across the surface in the given direction. Use a suitable parametrization of the surface, wherever required.
(i) $F=x i+y j+z k$ outward through the portion of the cylinder $x^{2}+y^{2}=1$ cut by the planes $z=0$ and $z=a$.
(ii) $F=4 x i+4 y j+2 k$ outward through the surface cut from the bottom of the paraboloid $z=x^{2}+y^{2}$ by the plane $z=1$.
(iii) $F=x z i+y z j+k$ across the surface of the upper cap cut from the solid sphere $x^{2}+y^{2}+z^{2} \leq 25$ by the plane $z=3$.
(iv) $F=-x i-y j+z^{2} k$ outward (normal away from the z-axis) through the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=2$.
(v) $F=x^{2} j-x z k$ outward (normal away from the $y z$-plane) through the surface cut from the parabolic cylinder $y=x^{2}, x \in[-1,1]$, by the planes $z=0$ and $z=2$.
(vi) $F=2 x y i+2 y z j+2 x z k$ upward across thr portion of the plane $x+y+z=2 a$ that lies above the square $[0, a] \times[0, a]$ in the $x y$-plane.
