MTH 201: Multivariable Calculus and Differential Equations

Problem Set 2: Surface Integrals

1. Find parametrizations for the following surfaces.

- (a) The cap cut from the sphere $x^2 + y^2 + z^2 = 9$ by the cone $z = \sqrt{x^2 + y^2}$.
- (b) The surface cut from the parabolic cylinder $y = x^2$ by the planes z = 0, z = 3, and y = 2.
- (c) The portion of the cone $z = z\sqrt{x^2 + y^2}$ between the planes z = 2 and z = 4.
- (d) The portion of the plane x y + 2z = 2 inside the cylinder $x^2 + z^2 = 3$.
- (e) The portion of the cylinder $y^2 + (z-5)^2 = 25$ between the planes x = 0 and x = 10.
- (f) The ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$
- (g) The hyperboloid of two sheets $\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2} + 1$.
- 2. Use a parametrization to the express area of the surface as a double integral and then evaluate the integral.
 - (a) The cap cut from the paraboloid $z = 2 x^2 y^2$ by the cone $z = \sqrt{x^2 + y^2}$.
 - (b) The lower position cut from the sphere $x^2 + y^2 + z^2 = 2$ by the cone $z = \sqrt{x^2 + y^2}$.
 - (c) The portion of the plane z = -x inside the cylinder $x^2 + y^2 = 4$.
 - (d) The portion of the cone $z = \sqrt{x^2 + y^2}/3$ between z = 1 and z = 4/3.
- 3. Compute the surface area of the following surfaces.
 - (a) The ellipse cut from the plane z = cx by the cylinder $x^2 + y^2 = 1$.
 - (b) The portion of $x^2 = 2z$ that lies above the traingle bounded by $x = \sqrt{3}$, y = 0, and y = x in the xy-plane.
 - (c) The cap cut from the sphere $x^2 + y^2 + z^2 = 2$ and $z = \sqrt{x^2 + y^2}$.
 - (d) The surface in the first octant cut from the cylinder $y = (2/3)z^{3/2}$ by the planes x = 1 and y = 16/3.
 - (e) The portion of the paraboloid $x = 4 y^2 z^2$ that lies above the ring $1 \le y^2 + z^2 \le 4$ in the *yz*-plane.
 - (f) The portion of the cone $z = \sqrt{x^2 + y^2}$ that lies over the region between the circle $x^2 + y^2 = 1$ and the ellipse $9x^2 + 4y^2 = 36$ in the *xy*-plane.
- 4. Integrate the given function over the given surface.
 - (a) H(x, y, z) = yz over the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$.
 - (b) G(x, y, z) = xyz over the rectangular solid bounded by the planes $x = \pm a$, $y = \pm b$, and $z = \pm c$.
 - (c) $G(x, y, z) = x^2$ over the unit sphere.
 - (d) G(x, y, z) = x over the surface given by $z = x^+y$, for $(x, y) \in [0, 1] \times [-1, 1]$. $H(x, y, z) = x^2\sqrt{5-4z}$ over the the parabolic dome $z = 1 - x^2 - y^2$.
 - (e) G(x, y, z) = x + y + z over the portion of the plane 2x + 2y + z = 2 in the first octant.
 - (f) G(x, y, z) = z over the cylindrical surface $y^2 + z^2 = 4$, $z \ge 0$, $x \in [1, 4]$.

- 5. Find the flux across the surface in the given direction. Use a suitable parametrization of the surface, wherever required.
 - (i) F = xi + yj + zk outward through the portion of the cylinder $x^2 + y^2 = 1$ cut by the planes z = 0 and z = a.
 - (ii) F = 4xi + 4yj + 2k outward through the surface cut from the bottom of the paraboloid $z = x^2 + y^2$ by the plane z = 1.
 - (iii) F = xzi + yzj + k across the surface of the upper cap cut from the solid sphere $x^2 + y^2 + z^2 \le 25$ by the plane z = 3.
 - (iv) $F = -xi yj + z^2k$ outward (normal away from the z-axis) through the portion of the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 2.
 - (v) $F = x^2 j xzk$ outward (normal away from the *yz*-plane) through the surface cut from the parabolic cylinder $y = x^2$, $x \in [-1, 1]$, by the planes z = 0 and z = 2.
 - (vi) F = 2xyi + 2yzj + 2xzk upward across the portion of the plane x + y + z = 2a that lies above the square $[0, a] \times [0, a]$ in the xy-plane.